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The validity of Weibull estimators 

H. PETERLIK 
Institut fdr FestkOrperphysik, Universit~t Wien, Boltzmanngasse 5, A-1090 Vienna, Austria 

The parameters of the two-parametric Weibull distribution, the Weibull modulus and the 
scale parameter, were estimated by using not only analytical means but also Monte-Carlo 
simulations. The precision of the measurement of both parameters, i.e. their variation 
coefficient, has been calculated. It is shown that the variation coefficient of the scale 
parameter is dependent on the number of experiments, M, which were performed, and on 
the Weibull modulus itself, whereas the variation coefficient of the Weibull modulus is only 
dependent on M. Furthermore, the correctly interpreted results show that each single 
measurement gives the statistically correct Weibull parameters and the biasing arises only 
from the method of adding single measurements to obtain a mean value. Thus, in practice, 
when only one set of experiments for further evaluation is available, there is no need for 
adjustment factors. 

1. Introduction 
The Weibull distribution has been widely used to 
describe the statistical behaviour of the fracture of 
ceramics [1, 2]. It is based on the "weakest-link hy- 
pothesis", which means that the most serious flaw 
controls the strength. As in processing ceramic pow- 
ders of different sizes and different compositions are 
used, there may arise quite complex flaw distributions 
and these may effect, for example, two superimposing 
Weibull distributions. This is one of the limits of the 
description of the fracture behaviour of brittle mater- 
ials by the two-parametric Weibull distribution. An- 
other limit is due to the statistical character of the 
Weibull distribution itself, which leads to an uncer- 
tainty in the parameters obtained by evaluation from 
a limited number of experiments. The purpose of the 
present work was to clarify the latter point. 

Thus, it is assumed that the fracture stresses of 
a ceramic are distributed according to the two-para- 
metric Weibull distribution, the two parameters being 
the Weibull modulus and the scale parameter. As 
already mentioned, in practice it is only possible to 
test a limited number of specimens. Thus the para- 
meters of the true distribution can only be determined 
with a certain accuracy with respect to time and 
money of the material producer and the testing insti- 
tution. The number of tests is the basic limit for the 
determination of the parameters, even if the experi- 
ments are carried out with the utmost care. The dis- 
persion of test results is here only due to the statistical 
character of the fracture behaviour. 

The precision of the measurement of the crack ex- 
tension parameters has been investigated by Ritter et 
al. [3]. In their work, the precision of the measurement 
of the Weibull parameters, evaluated by linear regres- 
sion, has also been investigated. Many important 
relations can be found in their paper. It consists of 
Monte-Carlo simulations of experiments as well as of 

analytical results. Owing to the development of com- 
puters since that time, it is now possible to carry out 
104 times more simulated experiments, which reduces 
the expected error, in a rough estimation, by the 
square root of this number, i.e. by a factor of a hun- 
dred. In this way it is possible to control the precision 
of the numerical simulations with analytical results, 
which can be found for some special cases. 

The validity of Weibull estimators has been an 
interesting theme of scientific research over 25 years 
[4-10]. Much effort was spent on the discussion of the 
precision and the biasing of the parameters deter- 
mined by different evaluation methods, e.g. linear re- 
gression, moments and maximum likelihood method. 
Adjustment factors were developed to correct the bias- 
ing [4, 6, 7, 9]. The scope of the present work was to 
show that each single measurement of the Weibull 
parameters is correct and the biasing arises only from 
the method of adding the parameters, if one tries to 
obtain a mean value from a number of measurements 
of different laboratories from the same material. 
Hence, adjustment factors should not be applied, if 
only one set of tests is available and thus only one 
evaluation could be performedl 

2. Theoretical background 
In describing the fracture behaviour of ceramics, the 
two-parameter Weibull distribution is widely used 

Py = 1 - exp - (1) 

where Py is the failure probability, cy the fracture 
strength and cy0 and m are the Weibull parameters, the 
scale parameter and the Weibull modulus, respect- 
ively. In practice, it is only possible to perform a lim- 
ited number of experiments to determine the true 
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values of the distribution, Cyo and m. Then, in the 
well-known maximum likelihood evaluation method, 
one obtains parameters C~ML and mML from the 
measurement of M fracture strength values %, 
j = 1 ... M and calculating roME from the implicit 
equation 

M 

M u ~ (C~j) "~  in (Yj 
- -  + ~ l n ~ j  M j= - M = 0 (2a) 
mML j : l  Z ((~J) rome 

j = l  

and ~ML from 

M 

Y(c~j) -=- C~ML = J (2b) 
M 

Because the true parameters, cyo and m, and the para- 
meters obtained by experiments and subsequent 
evaluation by the maximum likelihood method, do 
not necessarily coincide, the latter are denoted by the 
subindex ML. 

The method used to obtain expectation values of 
measurements has been outlined elsewhere [11], 
where the expectation value of the subcritical crack 
growth parameter, n, and the standard deviation, An, 
was computed. The calculation of the expectation 
values of OML and roME is quite similar: the variables 
%- obey individual Weibull distributions, see Equation 
1. Hence expectation values of measurements are pre- 
dicted as integrations with respect to the measure 

dW = 1-[dcyjP'(cyj) (3) 
J 

If ~ML denotes the outcome of a single measurement of 
~ (%) ,  see Equation 2b, the expectation value is 
obtained by integration 

f d W  ~(c~j) (4) 

The same procedure may be applied for computing 
the variance, defined as the square of the standard 
deviation ACYML 

(A(YML) 2 = <(OML)2> -- (OML> 2 (5) 

3. Precision of the scale parameter 
The precision of the determination of the scale para- 
meter, Go was investigated. It is shown that for the 
maximum likelihood evaluation and for known 
m there exist analytical solutions for ~ML and ACYML/CY o 
which depend on the Weibull modulus, m, and the 
number of experiments, M, which are performed to 
determine C~ML. The analytical solution shows the 
main features. The functional dependence for the gen- 
eral case (m unknown, see Section 3.2) is nearly ident- 
ical with the special case (m known, see Section 3.1). 
Because of the complex way of determining m, the 
general case was only numerically calculated by 
Monte-Carlo simulations and compared with the ana- 
lytical solution for known m. 

3.1. Case one: the true Weibull parameter, 
m, is known 

If the Weibnll modulus, m, is known and constant, the 
scale parameter is obtained from Equation 2b. The 
expected value of C~ML is then 

~O-ML ) 

M 

(fi = (YO M - 1 / m  d x j e  x l -  . . . .  x,, 
,d j = 1 

x ( x l  + . . .  + xM) 1/"~ (6) 

by using xj = (%/~o) m as a new variable. Now, the 
number of integrals, which have to be solved, can be 
reduced to one by the following coordinate trans- 
formation 

X1 = Yl 

X M - 1  = Y M - 1  

X 1  -~- " " " -~- X M  = Y M  (7) 

With the abbreviation y = YM, it follows that 

f [f f j ( ( Y M L )  = (YO M v l / m  dy1"'" dyM-1 dy 
j0 

x y M -  1 e -Y  y i / , ,  (8a) 

Y~ +"  " " + YM-1 < 1  (8b) 

yi > 0 (8c) 

The integrals in the brackets are determined by repla- 
cing y ~ / m ~  1 in Equation 8, because equations 6-8 
hold for arbitrary integrands. The integrals in the 
brackets thus evaluate to 1/F(M). Hence, we arrive at 
the solution 

<CYML> = c~oM 1 / "F[M + (l/m)] (9) 
F(M) 

which gives the true parameter, Cyo, only in the limits 
M ~ oo or m ~ oe. It was this result, which led to 
misunderstandings in the data obtained by numerical 
simulation in the literature [4-10]. As can be seen 
from this equation, the expectation value of the scale 
parameter, (YMC, obtained by an evaluation of meas- 
ured stresses, is not the true scale parameter, cy0. This 
has induced discussion about the biasing of different 
evaluation procedures for the parameters of the 
Weibull distribution and the use of correction factors 
[4, 6, 7, 9]. But the correct interpretation from a stat- 
istical point of view is the following: N different work- 
ing groups measure scale parameters from the same 
material, denoted by aML,i, and each of these scale 
parameters was obtained by M independent fi'acture 
stress tests. Then someone collects the data and 
computes the arithmetic mean to obtain a more 
precise value for the scale parameter. Even for an 
infinite number of data from different working groups 
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he does not obtain the true scale parameter The result is 

( ( Y M L )  = lim ~ OML,i 
N ~  i = 1  

c~0 M-1/~ F [M + (l/m)] r  (10) 
F(M) 

The reason being that the distribution of aML,i is asym- 
metric and the arithmetic mean is not the correct way 
to calculate the true value. Though it might be a very 
rare case, in practice, that many different laboratories 
measure data from the same material, there is, how- 
ever, a much simpler way to obtain the correct expec- 
tation value. One has to choose the scale in the right 
way to symmetrize the distribution of the scale para- 
meters. For the scale parameter this is quite simple, 
taking into account the functional form of the Weibull 
distribution. One has to add the measurements of the 
different working groups analogously to Equation 2b 
by adding the power of m of the measured scale 
parameters 

lim ((~ML, i) m = ao (11) 
/V~oo i = 1  

But the usual case is that only one scale parameter 
from one material (evaluated from a certain number, 
M, of tests) is available. Each  evaluation by the max- 
imum likelihood method gives the correct  result. Only 
if more scale parameters were measured from one 
material by independent sets of tests, does the arith- 
metic mean not give the true parameter cy0, but has to 
be corrected by Equation 9 or has to be added in 
a different way by Equation 11. In other words, a bias- 
ing of experimentally obtained parameters arises not 
from a biasing of single measurements, but from the 
procedure to calculate the arithmetic mean of inde- 
pendent (correct, but asymmetrically distributed) 
measurements. This means that only the method of 
adding data arithmetically is inappropriate to obtain 
the true values of the parameters. A single measure- 
ment, however, is correct and one cannot draw any 
conclusions about a biasing. Thus, discussions about 
biasing and adjustment factors, should now cease, 
because they should not be applied if only one set of 
data (from a certain number of tests) was measured, 
which is the usual case in practice. 

The essential information about the accuracy and 
quality of an evaluation procedure can be derived 
from the standard deviation and the variance, as de- 
fined in Equation 5. These are variables, which give 
the minimal possible dispersion. Even with the best 
experimental equipment one cannot obtain more pre- 
cise values, because this dispersion is only due to the 
nature of the inherent failure mechanisms and the 
arising distribution of fracture stress values. It should 
be noted that, for asymmetric distributions, con- 
fidence intervals are better suited to describe the frac- 
ture behaviour [5, 10]. For the sake of simplicity, 
however, we restrict ourselves to a symmetric descrip- 
tion, see Equation 5. Then the variation coefficient, 
A~ML/~0 is calculated analogously to Equations 6-9. 
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( AO'ML~2 = M_2/m(r[M+(2/m)] 
C~o / \ F(M) 

_  FEM_L 
[ F(M) J ] 

(12) 

This is the minimal standard deviation, which depends 
only on the statistical nature of the failure mechanisms 
of a ceramic and can thus by no means be experi- 
mentally improved. As will be shown in Section 3.2, 
for the general case (m unknown), AC~ML/C; o shows 
principally the same functional behaviour on the num- 
ber of measurements, M, and differs only by a small 
constant factor. 

Another possible means of evaluating the Weibull 
parameters is the linear regression. The parameters 
obtained by this evaluation procedure are denoted by 
the subindex LR, i.e. mLR and rYLR. In this case, these 
Weibull parameters are obtained from a diagram of 
the logarithmic strength values versus appropriate 
values of the  fracture probability in In ( 1 -  pf) - l ,  
where for j = 1 , . . . ,  M experiments 

j - 0 . 5  
P~ = M (13) 

has been recommended [10]. Because here the frac- 
ture probability is chosen by appointment, unfortu- 
nately one cannot use the above approach for the 
maximum likelihood method, where the fracture 
probabilities, Pz, are abitrary (statistically distrib- 
uted). Contrary to the linear regression method, the 
maximum likelihood method offers a number of ana- 
lytical possibilities to calculate expectation values, e.g. 
the distribution of the logarithms of the experi- 
mentally obtained scale parameters in terms of the 
Gamma-function and its derivatives 

~F'(M) l n M ]  (14) (ln C~ML) = In (Yo k F(M) 

Another argument for the use of the maximum likeli- 
hood procedure is the slightly better accuracy, de- 
scribed by the smaller variation coefficient; see the 
results in Section 3.2. 

3.2. Case two: the true Weibull  parameter 
m is unknown 

This is the general case, in which the Weibull modulus, 
mML, is obtained by a set of experiments, evaluated 
from Equation 2a, and the scale parameter, CYML is 
evaluated from Equation 2b. An analytical solution 
could not be found, because mML is only given by the 
implicit and transcendent Equation 2a. By performing 
numerical calculations and comparing them with the 
analytical solution for known m, see Equation 12, it 
fortunately turns out that the functional dependence 
of ~ML on the number of experiments, M, is of 
the same behaviour as for the case treated in Section 
3.1 and differs only by a factor, a, close to 1. The 



I ' ! 
3.50 

3.00 

2.50 

~ 2.00 

<~ 1.50~- 

1.00 i 

0.50 

0 " 0 0 L  I , 

0 

"" ! 

, , t , , I , , ~ I = , , I , , , i i 

20 40 60 80 100 
M 

1.20 

E 1.15 

A 

~ 1.10 

1.05 

~D 

1.00 

0.95 

I ' 

I 
I,, 

0 
~ I ~ , , r , ~ I t , , I , , , I 

20 40 60 80 1 O0 
M 

Figure 1 The variation coefficient AC~L/CY 0 obtained by the max- 
imum likelihood evaluation of numerically simulated experiments 
for m = ([])  10, (�9 20 and (A) 30, depending on the number, M, of 
experiments performed. ( ) Obtained from equation 15a, (-  
obtained by evaluation from linear regression, with fracture prob- 
abilities chosen according to equation 13. 

expectation value is then 

(A ML) 2 =  ._2,m(rEM +_(2/mtn 
~0 / \ F(M) 

_ 2) 
( r(M) j / 

with 

(15a) 

= 1.05 _+ 0.003 (15b) 

where the error in Equation 15b is obtained from the 
numerical simulations in the range of the number of 
experiments from M = 1~100. In Fig. 1 the numer- 
ically simulated results for the variation coefficient 
A(YML/(Y0 can be seen for three different Weibull 
moduli, m = 10, 20 and 30. The solid lines are ob- 
tained from Equation 15a and fit the numerical data 
very well. For comparison, the dashed lines represent 
the results for AcYi~R/C~0 from an evaluation by linear 
regression using Equation 13 as definition for the 
probability of fracture. The variation coefficient of the 
linear regression method is slightly higher than that of 
the maximum likelihood evaluation procedure. 

Using Equation 15a the lowest bound for the deter- 
mination of the scale parameter may be calculated for 
an arbitrary number of tests performed, or the number 
of tests necessary to obtain a certain accuracy may be 
calculated in advance. 

4. Experimentally obtained Weibull- 
modulus, roME 

As has been already mentioned, the dependence of the 
experimentally determined Weibull modulus, rnML, on 
the number of tests performed cannot be computed by 
the method outlined above, because it is only given by 
an implicit and transcendent equation. Thus, the de- 
pendence OfmuL and AmMi/m is given by a polynomial 
fit of the numerically simulated tests. If a number of 
measured mML is available, and the respective values 
are added arithmetically, one has to correct the 

Figure 2 Dependence of the correction function G(M) on the num- 
ber, M, of experiments for rn = ( ~ )  10, (�9 20 and (A) 30. ( ) 
Calculated from equation 16; (-  -)  obtained by evaluation from 
linear regression. 

obtained mML by a function G(M) to obtain the correct 
value. Usually there is only one case in practice: if one 
calculates the crack extension parameter, n, from ex- 
periments with constant loading rate, the proposal for 
the CEN-standard [12] requires ten tests at five load- 
ing rates each differing by one order of magnitude. 
Thus, five different Weibull moduli are obtained. The 
corrected mean value gives the highest precision (the 
lowest standard deviation), if the evaluation of the 
crack extension parameter is performed by the max- 
imum likelihood procedure [13]. Fig. 2 shows the 
dependence of the correction function G(M) on M. It 
is independent of the Weibull modulus (see numer- 
ically computed values for m = 10, 20 and 30. This 
observed independence of the actual value of m is in 
agreement with previous analytical considerations of 
Bain and Antle [4]. The solid line in Fig. 2 is cal- 
culated by the fit 

(mML> 
O(M) --= 

m 

= 1 + 2 . 1 0 4 9 M  -1"1 (16) 

The dashed line, obtained by the linear regression 
method with the fracture probabilities chosen accord- 
ing to equation 13, is shown for comparison. An 
arithmetic mean from mLg-values (calculated by linear 
regression) is less biased than an arithmetic mean from 
mML values (calculated by maximum likelihood), 
which means that the result of the arithmetic mean is 
not as bad for the linear regression procedure as for 
the maximum likelihood evaluation. 

But really relevant and interesting is the accuracy of 
the evaluation procedure, described by the variation 
coefficient AmML/m. As is shown in Fig. 3, it is inde- 
pendent of the actual value of m. The solid line is 
calculated from a fit given by 

A/TtML 
- 0.04222 + 2.3375 M -~ (17) 

m 

Again, for comparison, the dashed line is computed by 
the linear regression method and has a slightly higher 
standard deviation than the maximum likelihood 
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Figure 3 The variation coefficient of the Weibull parameter m, 
AmMz/m, for m = ([]) 10, ((2)) 20, and (A) 30, depending on the 
number of experiments, M. ( ) Obtained from equation 17; 
(- - ~ linear regression is shown for comparison. 

evaluation procedure. From the two fits, which are 
valid to a precision of less than 2% in the range 
M = 10-100, one can calculate the lower bound of the 
standard deviation for the experimentally obtained 
Weibull parameter mML. 

5. Conclusion 
By analytical solutions and numerical calculations it 
has been shown that the maximum likelihood evalu- 
ation procedure gives correct results for the Weibull 
parameters determined from a set of experiments. Only 
if more than one working group measured data from 
the same material, must the data be corrected, if arith- 
metically added. The same relation holds for other 
evaluation procedures, such as the linear regression 

method. The variation coefficient, i.e. the standard 
deviation divided by the mean of the value itself, is 
given for both Weibull parameters, as the dependence 
on the number of measurements, M. It is slightly lower 
for the maximum likelihood than for the linear regres- 
sion evaluation procedure. 
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